Meath Green Infant School

Calculation Policy

Early Years Calculation Policy

The following pages show the progression in calculation (addition, subtraction, multiplication and division). The consistent use of the CPA (concrete, pictorial, abstract) approach helps children develop mastery across all the operations in an efficient and reliable way.

In Reception, children focus on concrete and pictorial representations. At this stage, children focus on representing objects in different ways e.g. understanding that 5 cars can also be represented as 5 counters, 5 cubes, 5 pictures of cars etc.

In Reception, children are encouraged to record their findings in their own way. This may include writing number sentences e.g. $3+4=7$, however this is not a requirement until Year 1.

Calculation Policy Reception

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. Children record their calculations in their own ways, there is no expectation of number sentences at this stage however children may choose this way to record their thinking.

Key Vocabulary: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, divide, share, shared equally

Addition:

Children start to explore addition by sorting groups. They then use sorting to develop their understanding of parts and wholes. Children combine groups to find the whole, using a part-

Subtraction:

Children start to explore subtraction by sorting groups. They use sorting to develop their understanding of parts and wholes. When comparing groups, children use the language

Multiplication and Division:

Children first start to look at the idea of equal groups through their exploration of doubles. They use five frames and objects to check that groups are equal. Children then explore halving
whole model to support their thinking. They also use the part-whole model to find number bonds within and to 10 . Using a five frame and ten frame, children add by counting on. They start by finding one more before adding larger numbers using counters or cubes on the frames. Children use a number track to add by counting on.
Linking this learning to playing board games is an effective way to support children's addition.
more than and fewer than. This will lead to finding the difference when they move into KS1. Children then connect subtraction with the idea of counting back and finding one less using a five frame to support their thinking. They explore subtraction by partitioning numbers, developing their understanding of parts and wholes. This links to their developing recall of number bonds. Children count back within 20 using number tracks and ten frames to see the effect of taking away
numbers by making 2 equal groups. They highlight patterns between doubling and halving seeing that double 2 is 4 and half of 4 is 2 . As wel as halving, children also explore sharing into more than 2 equal groups. They share objects 1 by 1 , ensuring that each group has an equal share.

Reception

	Real-life representation	Other representations
Addition	Sorting groups Children sort everyday objects into groups.	
		Counting and adding more (within 5) Children add one more person or object to a group to find one more.

Meath Green Infant School Calculation Policy Reviewed February 2024

		\square
Subtraction	Sorting groups Children sort everyday objects into groups.	
	Comparing groups Children line up objects to compare the amount. They line the objects up either horizontally or vertically.	Comparing groups Children line up cubes or counters to compare the amount in each group. Lines can either be horizontal or vertical. A starting line helps to line the objects accurately. There are more conkers.

Meath Green Infant School Calculation Policy Reviewed February 2024

		There are fewer pinecones.
	Counting back and taking away (within 5) Children remove one more person or object from a group to find one less. First there were 5 people on the bus. Then 2 people got off the bus. Now there are 3 people on the bus.	Counting back and taking away (within 5). Children use five frames and objects to make a number. They then remove or cross out one object to find one less. One less than 4 is 3.

(Introducing the part-whole model

| Multiplication | Making doubles
 Children explore doubles in their environment including
 in games such as on dominoes or dice. They focus on the
 understanding of doubles being 2 equal groups. |
| :--- | :--- | :--- |

Calculation Policy for Key Stage 1

The following pages show the progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental method.

Key Stage One Calculation Policy

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key Vocabulary: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations. A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with $15-3$ and $15-13$, they will adapt their ways of

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2 s , 5 s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division. They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation. In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations. Children begin to recall

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole. In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

approaching the calculation appropriately. The	some key multiplication facts, including doubles, teaching should always emphasise the
and an understanding of the 2,5 and 10 times-	
importance of mathematical thinking to ensure	tables and how they are related to counting.
accuracy and flexibility of approach, and the	
importance of using known number facts to	
harness their recall of bonds within 20 to support	
both addition and subtraction methods. In Year	
2, they will start to see calculations presented in	
column format, although this is not expected to	
be formalised until KS2.	

Year 1			
	Concrete	Pictoral	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more.	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7.
			one more than 6.
		One more than 4 is 5.	Learn to link counting on with adding more than one.
			$5+3=8$

	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6	Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$
	Knowing and finding number bonds within 10 Break apart a group and put back together to find and form number bonds. $2+2=4$ $6=2+4$	Knowing and finding number bonds within 10 Use five and ten frames to represent key number bonds. $5=4$ $+1$ $10=7+3$	Knowing and finding number bonds within 10 Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$

	$\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	$\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	$\begin{aligned} & 3+5=8 \\ & \text { So, } 13+5=18 \end{aligned}$
	Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10 . So, 7 add 5 is 10 and 2 more	Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation
Year One	Counting back and taking away	Counting back and taking away	Counting back and taking away
Subtraction	Children arrange objects and remove to find how many are left.	Children draw and cross out or use counters to represent objects from a problem.	Children count back to take away and use a number line or number track to support the method.

First we had 15 cookies. Then we took away 4 cookies. Now we have 11 cookies.		
Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction. $8-5=?$	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction. $5-4=\square$	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part.
Finding the difference Arrange two groups so that the difference between the groups can be worked out.	Finding the difference $5-4=1$ The difference between 5 and 4 is 1.	Finding the difference Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .

	6 is 2 more than 4. The difference between 6 and 4 is 2 .		
	Subtraction within 20 Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand when and how to subtract 1s efficiently.	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
	Subtracting 10s and 1s For example: 30-13 Subtract 13 by first subtracting the 10 , then the remaining 3.	Subtracting 10s and 1s For example: 18-12 Use ten frames to represent the efficient method of subtracting 12.	Subtracting 10s and 1s Use a part-whole model to support the calculation.
	Subtraction bridging 10 using number bonds	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method. $13-7=$ 6 \square

Year 2			
	Concrete	Pictoral	Abstract
Year 2 Addition			
Understandin g 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10 s	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals
Adding 10s	Use known bonds and unitising to add 10s. I know that 4+3=7. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Adding a 1digit number to a 2-digit number not bridging a 10	Add the 1s to find the total. Use known bonds within 10. mambal 10 $\frac{10}{10}$ + 10 $\frac{10}{10}$ 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. A number can also be represented in a place value grid	Add the 1s 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. a)
Adding a 1digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. There are 4 tens and 5 ones. $+ \text { mament }$ I need to add 7. I will use 5 to complete a 10 , then add 2 more.	Complete a 10 using number bonds	Complete a 10 using number bonds $\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$

Year 2 subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10. 8 subtract 6 is 2. $\triangle \triangle \not \triangle \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10. $10-3=7$ So, 10 tens subtract 3 tens is 7 tens	Use known number bonds and unitising to subtract multiples of $\mathbf{1 0}$. 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single digit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. this may be done in or out of a place value grid.	Subtract the 1s. understand the link between counting back and subtracting the 1 s using known bonds. $\begin{aligned} & 9-3=6 \\ & 39-3=36 \end{aligned}$

Meath Green Infant School Calculation Policy Reviewed February 2024

number using exchange			
Subtracting a 2 digit number	Subtract by taking away 0000000000 0000000000 0000000000 0000000000 \varnothing	Subtract the 10s and the 1 s . This can be represented on a 100 square.	Subtract the 10s and the 1 s . This can be represented on a number line. $64-41=$? $64-1=63$ $63-40=23$ $64-41=23$ $\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$
Subtracting a 2 digit number using place value columns	Subtract the 1s. Then subtract the 10 s . This may be done in or out of a place value grid.	Subtract the 1s. Then subtract the 10s.	Using column subtraction, subtract the 1s. Then subtract the 10 s .
Subtracting a 2 digit number with exchange.		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .

Year 2 multiplication			
Equal groups and repeated addition	Recognise equal groups and write as a repeated addition and as multplication. 2 groups of 5 buns. 10 buns altogether.	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication. \square 3 groups of 5 15 in total	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$

Using arrays to represent multiplication and support understandin g	Understand the relationshop between arrays, multplicationa and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. $5 \times 5=25$
Understandin g commutativit y	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$

Learning $\mathbf{x 2}$ x5 and x10 table facts	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts. 3 groups of 10... 10, 20, 30 $3 \times 10=30$	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. 0000000000 0000000000 0000000000 $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	Understand how the times-table increase and contain patterns. 1010 $1010101010 / 1010 / 10101010$ $\begin{aligned} & 5 \times 10=50 \\ & 6 \times 10=60 \end{aligned}$

Year 2 division				

Grouping equally	Understand how to make equal groups from a whole. 9 divided into 3 equal groups. There are 3 in each group.	Understand that the relationship between grouping and division statements. $12 \div 3=4$ 000000000000 $12 \div 4=3$ \square $12 \div 6=2$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve division	Understanding the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \\ & 9 \times 10=90 \\ & 10 \times 10=100 \end{aligned}$ I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 .

